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“No one must think that Newton’s great

creation can be overthrown in any real sense by

this [Theory of Relativity] or by any other

theory. His clear and wide ideas will for ever

retain their significance as the foundation on

which our modern conceptions of physics have

been built.”
— Albert Einstein

In Newtonian mechanics, we have seen that momentum conservation law remains invari-

ant under Galilean transformation. The Newtonian definition of momentum is given by

p = mu, where m is mass of object and u is velocity. One may ask what happens to the

momentum conservation law if we use Lorentz transformation equations? The old definition

of linear momentum is valid or we need to redefine this. To see this, below we consider an

example of elastic collision of two objects.

In Fig. (1), we have demonstrated an elastic collision of two particles A and B. The S

frame is considered to be at rest and S ′ frame moving in positive x-direction with speed u.

Observers of both the frames records the elastic collision between the objects A and B. We

assume that before collision, object A is at rest in S frame and object B is at rest in S ′

frame. Next, we consider that at the same moment, particle A has been thrown to positive

y-direction and particle B to negative y′-direction with speed UA and U ′B respectively. We
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FIG. 1: S′ frame moving with constant velocity u relative to S frame in the +ive x−direction,

where u = (u, 0, 0). On the right-hand side we have shown an elastic collision of two objects A and

B along y direction. Initially, for both frames, the objects are ly distance apart.

take that

UA = U ′B, (1)

which implies that particle B behaves in same manner in S ′ frame as particle A in S frame.

After collision, object A bounce back in negative y-direction at speed UA while object B

bounce back in positive y′-direction at speed UB. If we assume that objects are pushed

from positions ly apart, then for S frame observer collision occurs at y = ly/2 and for S ′

frame observer it happens at y′ = y = ly/2. Thus, measured round trip time τ0 for S frame

observer is given by

τ0 = ly/UA, (2)

and for S ′ frame observer measured time is same and given by

τ0 = ly/U
′
B. (3)

If we consider that round trip time for object B measured in S frame is τ , then speed UB

in S frame is given by

UB = ly/τ. (4)

The round trip time for particle B in frame S ′ is τ0 as we have already discussed. The
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relation between τ and τ0 is given by

τ = γτ0, (5)

where γ = 1/
√

1 − β2 with β = u/c. Now from Eq. (2)

UA = ly/τ0, (6)

and using Eq. (5) in Eq. (4), we obtain

UB =
ly
√

1 − β2

τ0
. (7)

Next, using Newtonian definition of momentum, momentum observed in S frame for objects

A and B are respectively given by

pA = mAUA = mA(ly/τ0) (8)

and

pB = mBUB = mB

√
1 − β2(ly/τ0), (9)

where mA and mB are the measured masses in S frame. From Eqs. (8) and (9), we see

that momentum conservation will be violated if mA = mB. In order to have momentum

conservation, we must have

mB =
mA√
1 − β2

. (10)

Next, if we consider the case that velocities UA and UB tends to zero, then we can obtain how

the relativistic mass of an object varies with velocity. If UA and UB are negligible compared

to u, i.e., UA, UB � u, then S frame observer will witness that object B approach to A with

speed u and makes continuous glancing collision. Now for UA = 0, if we assume that m0 is

the mass of object A in S frame, then m0 = mA. Here m0 is the Newtonian mass and now

we call it rest mass. Again for U ′B = 0, if we take m is the mass of object A in S frame,

then m = mB. Thus, we can write Eq. (10) as,

m =
m0√

1 − u2/c2
=

m0√
1 − β2

= γm0 (11)

Now the relativistic momentum is defined by

prel =
m0u√

1 − u2/c2
=

m0u√
1 − β2

= γm0u. (12)
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Similarly, one can redefine the Newton’s law of motion, relativistic acceleration, etc. In next

article, we study the mass energy relation.
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